If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-490=0
a = 3; b = 0; c = -490;
Δ = b2-4ac
Δ = 02-4·3·(-490)
Δ = 5880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5880}=\sqrt{196*30}=\sqrt{196}*\sqrt{30}=14\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{30}}{2*3}=\frac{0-14\sqrt{30}}{6} =-\frac{14\sqrt{30}}{6} =-\frac{7\sqrt{30}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{30}}{2*3}=\frac{0+14\sqrt{30}}{6} =\frac{14\sqrt{30}}{6} =\frac{7\sqrt{30}}{3} $
| 2c=112 | | 14=4(1+k) | | j/8+21=27 | | 33/4m=33/34 | | 8(4x+9)=264 | | 2x-3=3/10x(5x-10) | | -11+4=-11x+-11 | | -14x+107=38 | | 8x-5=6x-18 | | 160=119-w | | 2/n=84/16 | | 6(g-1)=42 | | 4-10y=-66 | | 1/4(8y-4.8)=2(.9y+5.4)+3/5 | | x^2-5=-8 | | –7p=–5−6p | | sX5-32=48 | | X^3-27=9x^2+27x | | 180x+40=780 | | 3x+27+8-12=180 | | 40(r+180)=780 | | r-25.25=50 | | 2x+1–3x=6–x–5 | | 27x^2(x-3)-x(x-3)+77(x-3)+267=0 | | )2x+1–3x=6–x–5 | | 40=4.5+1.75x | | b⋅b⋅b= | | 4yy=8 | | b⋅b⋅b=b⋅b⋅b= | | -4(5-x)=4/5(x+11) | | -5x+9+2x=-3(x–3) | | 32=s+17 |